# Bitcoin GNU Generation

Axel Angel

**EPFL** 

April 2013

# Table of Contents

- Introduction
- 2 Details
- Outro

# Bitcoin

is a digital P2P

decentralized chaotic maybe-illegal free-as-in-free-software cyberpunk hype cool rebel next-gen bubble: EXPERIMENTAL alternative volatile underground anonymous cryptographic potential Currency

<sup>&</sup>lt;sup>1</sup>but don't told anyone

Bitcoin was created for a money without intermediates. Third parties:

- Cost
- Have trust problems
- Can revert transactions (e.g.: non-reversible services)
- Single-point of failure

### Bitcoin is:

- Decentralized (double spending)
- Cryptographic (SHA, ECDSA)
- Emerging (speculation)
- Open-source (and free)



Figure: Bitcoin logo

### Overview:

- Avoid double-spending, all transactions are publicly announced.
- Majority of nodes witness transactions order
- Block of chains

Issuing: First transaction of mined block is self-reward.

⇒ Incentive to play by rules

### Proof-of-work:

- SHA-256
- Target with adaptive difficulty (moving average)
- Block: (prev block hash, nonce, [ Tx, ... ])

cannot be changed unless redoing work

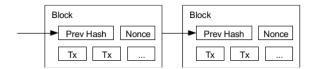
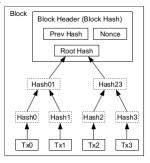
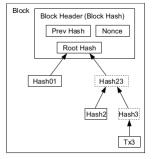



Figure: Blocks chain


### Network:

- (1) Transactions broadcast
- (2) Nodes collect them into block
- (3) Nodes mine
- (4) When new block, broadcast
- (5) Nodes check validity and mine next block if OK




### Merkle Tree: Transactions in a Merkle Tree allows:

- Partial verification
- Keep only block header



Transactions Hashed in a Merkle Tree



After Pruning Tx0-2 from the Block

Figure: Merkle tree of a block



Transactions and privacy

## Transactions and privacy:

- Transaction is [ in ], [ out ] and in/out amount
- Privacy not main goal (public, multi-inputs)
- Can be anonymous

- ullet Public key of destination + signature with this key
- Other cases:
  - Multi-signature (n among m)
  - Can add messages (OP\_DROP)
  - Bounty for hard problems/puzzles?

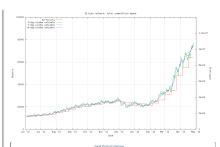
scriptPubKey: OP\_DUP OP\_HASH160 <pubKeyHash>
OP EQUALVERIFY OP CHECKSIG

scriptSig: <sig> <pubKey>

Mining:

| 6.         |              |             |               |       |
|------------|--------------|-------------|---------------|-------|
| Technology | Period       | Speed       | Example       | Watts |
|            | <del> </del> | ·           | ·             |       |
| CPU        | 2009-2010    | 52 Mhash/s  | Xeon x5690    | 170W  |
| GPU        | 2010-2011    | 825 Mhash/s | ATI 7970      | 214W  |
| FPGA       | 2011-2012    | 860 Mhash/s | ZTEX          | 50W   |
| ASIC       | 2013+        | 10 Ghash/s  | Block Erupter | 83W   |
|            |              |             |               |       |

Current mining speed: 69'570 Ghash/s (883 Peta-FLOPS)


Mining details

Mining details: Like a lottery. The SHA hash of block must be lower than the 256-bit target string (increment nonce): first to find wins. Probability to win per attempt:  $2.59 \times 10^{-17}$ .

# Because we love graphs









Conclusion

Do a useless conclusion now